Structure of the Tetrahedral Cobalt Cluster $\left[\mathrm{Co}_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathbf{H}_{5}\right)_{2}(\mathbf{C O})_{7}\right]$

By Maria I. Altbach, Frank R. Fronczek and Leslie G. Butler \dagger
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA

(Received 24 April 1987; accepted 14 July 1987)

Abstract

Co}_{4}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{CO})_{4}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)_{2}\right], \mu\)-car-bonyl-di- μ_{3}-carbonyl-tetracarbonylbis (η^{5}-cyclopenta-dienyl)-tetrahedro-tetracobalt, $\quad M_{r}=562 \cdot 0, \quad$ monoclinic, $\quad P 2_{1} / m, \quad a=7.862(1), \quad b=12.289$ (2), $\quad c=$ 9.344 (1) $\AA, \beta=97.26$ (1) ${ }^{\circ}, V=895.6$ (4) $\AA^{3}, Z=2$, $D_{x}=2.084 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=$ $36.75 \mathrm{~cm}^{-1}, F(000)=552, T=298 \mathrm{~K}, R=0.033$ for 3328 observed reflections. The molecule lies on a mirror plane. The four Co atoms form an irregular tetrahedron; $\mathrm{Co}-\mathrm{Co}$ distances range from 2.4171 (4) to 2.4942 (2) \AA. The planes of the two cyclopentadienyl rings form a dihedral angle of $48.6(1)^{\circ}$. A carbonyl ligand is unsymmetrically bound to three Co atoms; Co-C bond lengths vary from 1.942 (1) to 2.019 (1) \AA. The doubly bridging carbonyl is tilted towards one of the Co atoms to which it is not bound. A comparison of the title compound with the previously reported structure of the pentamethylcyclopentadienyl analogue, $\left[\mathrm{Co}_{4}\left\{\eta^{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)_{2}\right]$ [Cirjak, Ginsburg \& Dahl (1979). J. Chem. Soc. Chem. Commun. pp. 470-472], shows that $\mathrm{Co}-\mathrm{C}_{\mathrm{Cp}}$ bond lengths are shorter for the title compound; the same trend is found for $\mathrm{Co}-\mathrm{Co}$ distances. The planes of the two pentamethylcyclopentadienyl rings form a dihedral angle of 52.0° (average of two); the difference is attributable to steric interactions involving the methyl groups. Solution ${ }^{13} \mathrm{C}$ NMR and IR spectra of the title compound show that the solution structure is similar to the solid.

Introduction. The replacement of cyclopentadienyl ligands (Cp) by the bulkier and more electron-donating pentamethylcyclopentadienyl ligand (Cp^{*}) has been shown to cause significant structural changes in some organometallic complexes (Cirjak, Ginsburg \& Dahl, 1982; Huang \& Dahl, 1983). The tetranuclear cobalt cluster (I) was isolated as a byproduct in the course of the photochemical synthesis of $\mathrm{CoCp}(\mathrm{CO})_{2}$. It appeared of interest to us to solve the crystal structure of (I) and to analyze the structure of (I) relative to its Cp^{*} analogue $\quad\left[\mathrm{Co}_{4}\left\{\eta^{5}-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right\}_{2}(\mathrm{CO})_{4}(\mu-\mathrm{CO})\left(\mu_{3}-\mathrm{CO}\right)_{2}\right]$ (II). Recalling the structural variability of the tricobalt cluster, $[\mathrm{CoCp}(\mathrm{CO})]_{3}$ (Bailey, Cotton, Jamerson \&

[^0]0108-2701/87/122283-03\$01.50

Kolthammer, 1982), the solution structure of (I) was studied spectroscopically.

(I)

Experimental. Title compound isolated from photochemical reaction of dicobalt octacarbonyl with cyclopentadiene in hexane at room temperature (King, 1965). Black crystals isolated by slow crystallization from hexane at room temperature. Mass spectrum: molecular ion peak at $m / e 562$. The IR spectrum (KBr pellet) sharp peaks at $2043,2008,1991,1844,1727$ and $1705 \mathrm{~cm}^{-1}$ show presence of terminal, doubly and triply bridging carbonyl ligands. The ${ }^{1} H$ NMR ($400 \cdot 1 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, d_{8}$-toluene, 298 K) peaks at $\delta 4.43(s, 10 \mathrm{H})$ and $89.81(s, 10 \mathrm{C})$, respectively, correspond to equivalent protons and carbons in the Cp rings.

Data collected from irregular black crystal fragment, $0.44 \times 0.50 \times 0.36 \mathrm{~mm}$. Enraf-Nonius CAD-4 diffractometer with graphite monochromator. Space group from systematic absences $0 k 0$ with k odd and successful refinement in the centrosymmetric choice. Cell dimensions and crystal orientation from 25 reflections having $12 \leq \theta \leq 13^{\circ} . \omega-2 \theta$ scans, scan rates varied $0.45-4.0^{\circ} \mathrm{min}^{-1}$, designed to yield $I \sim 50 \sigma(I)$ for significant data; maximum scan time 120 s . Scan rate determined during a $4^{\circ} \mathrm{min}^{-1}$ prescan; if $I<$ $0 \cdot 5 \sigma(I)$ during prescan flagged as unobserved. 4073 unique reflections with $1 \leq \theta \leq 35^{\circ}, h, k, l$ range $0,0,-15$ to $12,19,14 ; R_{\text {int }}=0.016$. Three standard reflections, $700,0,10,2,002$, no decrease in intensity. Absorption correction by ψ scans, minimum relative transmission coefficient $81 \% .3328$ data with $I>3 \sigma(I)$ used in refinement. Co positions from Patterson map; other non-hydrogen atoms from Fourier maps; H atoms visible in ΔF map, positions calculated, C H $0.95 \AA .143$ variables refined by weighted full-matrix least squares based on $F, w=4 F_{o}^{2}\left[\sigma^{2}(I)+\left.\left(0.02 F_{o}^{2}\right)^{2}\right|^{-1}\right.$.
© 1987 International Union of Crystallography

Table 1. Positional parameters and equivalent isotropic thermal parameters
$B_{\mathrm{eq}}=\frac{4}{3}\left(a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+a b \beta_{12} \cos \gamma+a c \beta_{13} \cos \beta+b c \beta_{23} \cos \alpha\right)$.

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Col	0.21117 (3)	$0 \cdot 15166$ (2)	0.29396 (3)	$2 \cdot 208$ (4)
Co2	$0 \cdot 37237$ (4)	0.250	$0 \cdot 12602$ (3)	1.806 (5)
Co3	$0 \cdot 48155$ (4)	0.250	$0 \cdot 38269$ (3)	1.767 (5)
C1	0.0320 (4)	0.250	$0 \cdot 2103$ (4)	3.46 (6)
C2	0.4436 (2)	$0 \cdot 1219$ (2)	$0 \cdot 2552$ (2)	$2 \cdot 30$ (3)
C3	$0 \cdot 1728$ (3)	$0 \cdot 1170$ (2)	0.4720 (2)	$3 \cdot 15$ (4)
C4	$0 \cdot 1298$ (3)	0.0302 (2)	0.2055 (3)	3.80 (4)
O1	-0.1007 (3)	0.250	0.1418 (4)	5.28 (7)
O 2	0.5264 (2)	0.0434 (1)	0.2374 (2)	3.09 (3)
O3	0.1462 (2)	0.0953 (2)	0.5859 (2)	$5 \cdot 14$ (4)
O4	0.0843 (3)	-0.0483 (2)	$0 \cdot 1491$ (3)	$6 \cdot 50$ (5)
C1A	$0 \cdot 2353$ (4)	0.250	-0.0797 (3)	$3 \cdot 15$ (6)
C2A	$0 \cdot 3420$ (3)	$0 \cdot 1581$ (2)	-0.0617 (2)	$3 \cdot 21$ (4)
C3A	0.5131 (3)	$0 \cdot 1928$ (2)	-0.0324 (2)	3.34 (4)
C1B	$0 \cdot 5220$ (4)	0.250	0.6080 (3)	4.24 (8)
C2B	0.5995 (3)	$0 \cdot 1574$ (2)	$0 \cdot 5540$ (3)	3.95 (5)
C3B	$0 \cdot 7228$ (3)	$0 \cdot 1925$ (2)	0.4665 (3)	3.49 (4)

Non-H atoms refined anisotropically; H -atom positions fixed, isotropic B 's refined. Calculations using SDP software package (Frenz, 1985). Atomic scattering factors from International Tables for X-ray Crystallography (1974), anomalous-dispersion coefficients of Cromer (1965). Secondary-extinction coefficient, $g=2.01(5) \times 10^{-6}$, where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to $F_{c} \cdot w R=0.043, R=0.033$, $S=2.431,(\Delta / \sigma)_{\max }=0.09$. Maximum residual on Fourier map $1.08 \mathrm{e} \AA^{-3}$ located $0.85 \AA$ from $\mathrm{Co3}$, minimum $-0.75 \cdot 4 \mathrm{e} \AA^{-3}$. Atomic parameters are listed in Table 1.*

Discussion. The atom-labeling system for (I) and the packing in the unit cell are shown in Figs. 1 and 2 . All bond lengths and relevant bond angles are given in Table 2. Compound (I) has $m\left(C_{s}\right)$ symmetry. The four Co atoms form an irregular tetrahedron. The single metal-metal bond lengths for the Co atoms range from 2.4171 (4) \AA for $\mathrm{Col}-\mathrm{Col}$ ' to 2.4942 (2) \AA for $\mathrm{Co} 1-\mathrm{Co} 3$. The carbonyls $\mathrm{C} 2-\mathrm{O} 2$ sitting on the faces of the tetrahedron are unsymmetrically bound to three Co atoms; the difference in distance between C 2 and the chemically equivalent Co 2 and Co 3 is 0.045 (1) \AA. Another interesting feature is that the doubly bridging carbonyl $\mathrm{C} 1-\mathrm{O} 1$ is tilted towards Co 2 . This is apparent from the $102.6(1)^{\circ}$ angle between the planes $P 1$ [defined by $\mathrm{C} 1, \mathrm{Col}$ and $\mathrm{Col}^{\prime} ;$ O1 lies 0.055 (3) \AA from $P 1$] and $P 2$ (defined by $\mathrm{Co} 1, \mathrm{Co}^{\prime}$ and Co 2), while the angle between $P 1$ and $P 3$ (defined by Col, $\mathrm{Co} 1^{\prime}$ and Co 3) is $171.5(6)^{\circ}$. The Cp rings are planar with the largest deviation from planarity being

[^1]0.003 (3) \AA. The rings are in an eclipsed conformation; atoms $\mathrm{C} 1 A, \mathrm{Co} 2, \mathrm{Co} 3$ and $\mathrm{C} 1 B$ lie in the mirror plane. The angle between the planes of the rings is $48.6(1)^{\circ}$. The distances from the Co atoms to the centroids of the Cp rings, $\mathrm{Co} 2-\mathrm{Cp} A$ and $\mathrm{Co} 3-\mathrm{Cp} B$, are 1.700 and $1.702 \AA$, respectively. The tilt between the Cp ring normals and the lines defined by $\mathrm{Co} 2-\mathrm{Cp} A$ and $\mathrm{Co} 3-\mathrm{Cp} B$ are 0.2 and 2.0°, respectively. Steric interactions are found between the carbons of the triply bridging carbonyls and carbons $\mathrm{C} 3 A, \mathrm{C} 3 B, \mathrm{C} 2 A$ and $\mathrm{C} 2 A$ in the Cp rings; contact distances are smaller than the sum of the corresponding van der Waals radii. The difference between contact distances for $\mathrm{C} 2-\mathrm{C}_{\mathrm{Cp}}$ and the sum of their van der Waals radii varies from 0.806 (3) \AA for $\mathrm{C} 2-\mathrm{C} 3 B$ to 0.699 (3) \AA for $\mathrm{C} 2-\mathrm{C} 2 A$. Weaker steric interactions between C1 of the doubly bridging carbonyl and $\mathrm{C} 1 A$ of the ring, and C 3 of the terminal carbonyl with C1B and C2B are also present; the difference between contact distances and the sum of their van der Waals radii range from 0.392 (3) \AA for $\mathrm{C} 3-\mathrm{C} 1 B$ to 0.318 (3) \AA for $\mathrm{C} 3-\mathrm{C} 2 B$.

The replacement of hydrogens by methyl groups in the Cp rings causes some changes in the molecular structure as seen by comparing the structure of (I) with its Cp^{*} analogue (II). The crystal structure of (II) was reported by Cirjak, Ginsburg \& Dahl (1979). Co-Co distances are generally somewhat shorter in (I); the range of $\mathrm{Co}-\mathrm{Co}$ distances in (II) is $2 \cdot 386-2.554 \AA$. The stronger steric interactions in compound (II) are also between the triply bridging carbonyls and the

Fig. 1. ORTEP diagram (Johnson, 1965) of the title compound showing the atom-labeling scheme. For clarity, H atoms are not labeled.

Fig. 2. Stereoview of the unit cell, viewed approximately along the a axis, with b horizontal.

Table 2. Bond distances (\AA) and relevant bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Col-Col'	2.4171 (4)	Co3-C1B	2.089 (2)
$\mathrm{Col}-\mathrm{Co} 2$	2.4560 (2)	Co3-C2B	2.084 (1)
$\mathrm{Col}-\mathrm{Co} 3$	2.4942 (2)	Co3-C3B	2.082 (1)
Col-C1	1.944 (2)	$\mathrm{Cl} 1-\mathrm{Ol}$	1.153 (3)
Col-C2	1.942 (1)	C2-O2	$1 \cdot 187$ (2)
Col-C3	1.780 (1)	C3-O3	1.142 (2)
$\mathrm{Col}-\mathrm{C} 4$	1.785 (2)	$\mathrm{C} 4-\mathrm{O} 4$	1.136 (2)
$\mathrm{Co} 2-\mathrm{Co} 3$	2.4431 (3)	C1A-C2A	1.404 (2)
$\mathrm{C} 22-\mathrm{C} 2$	2.019 (1)	C2A-C3A	1.405 (2)
$\mathrm{Co2-C1A}$	2.082 (2)	C 3 A-C3A'	1.407 (4)
Co2-C2A	2.075 (1)	C1B-C2B	1.413 (2)
Co2-C3A	2.079 (1)	C2B-C3B	1.413 (2)
C03-C2	1.974 (1)	C3B-C3B ${ }^{\prime}$	1.414 (4)
Col'--Col-Co2	60.523 (5)	Col-Co3-C2'	97.37 (4)
Col'-Col-Co3	61.017 (5)	$\mathrm{Col-Co3-CpB}$	138.52
$\mathrm{Col}^{\prime}-\mathrm{Col}-\mathrm{C} 2$	$100 \cdot 86$ (4)	Co2-Co3-C2	53.13 (3)
Col'-Col-C3	103.84 (6)	$\mathrm{Co} 2-\mathrm{Co3-Cp} B$	156.36
Col'-Col-C4	146.74 (6)	C2-Co3-C2	105.78 (7)
$\mathrm{Col}^{\prime}-\mathrm{Col}-\mathrm{Cl}$	51.55 (4)	$\mathrm{C} 2-\mathrm{Co} 3-\mathrm{Cp}$ B	121.62
$\mathrm{Co} 2-\mathrm{Col}-\mathrm{Co} 3$	59.140 (7)	Col-C2-Co2	76.61 (5)
Co2-Col-C2	53.12 (4)	$\mathrm{Col}-\mathrm{C} 2-\mathrm{Co} 3$	79.12 (5)
Co2-Col-C3	$151 \cdot 30$ (5)	$\mathrm{Col}-\mathrm{C} 2-\mathrm{O} 2$	$136 \cdot 5$ (1)
Co2-Col-C4	107.42 (5)	Co2-C2-Co3	75.43 (4)
Co2-Col-C1	80.98 (6)	$\mathrm{Co} 2-\mathrm{C} 2-\mathrm{O} 2$	131.7 (1)
$\mathrm{Co3-Col-C2}$	51.01 (4)	$\mathrm{Co3-C2-02}$	133.5 (1)
Co3-Col-C3	92.47 (5)	Col-C3-O3	179.2 (1)
Co3-Col-C4	143.09 (6)	Col-C4-04	177.4 (2)
Co3-Col-Cl	112.10 (4)	Co2-C2A-C1A	70.52 (9)
C2-Col-C3	113.83 (6)	Co2-C2A-C3A	70.41 (8)
C2-Col-C4	92.68 (7)	$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	108.8 (1)
C2-Col-C1	133.88 (7)	$\mathrm{Co} 3-\mathrm{C} 18-\mathrm{C} 2 B$	70.0 (1)
C3-Col-C4	98.03 (7)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 2 B^{\prime}$	107.2 (2)
C3-Col-C1	108.97 (8)	$\mathrm{Co} 2-\mathrm{Cl} 1-\mathrm{C} 2 \mathrm{~A}$	69.99 (9)
C4-Col-C1	97.73 (7)	C2A-C1A-C2A	107.1 (2)
Co1-Co2-Col'	58.95 (1)	Col-Cl-Col ${ }^{\prime}$	76.90 (8)
$\mathrm{Col}-\mathrm{Co} 2-\mathrm{Co} 3$	61.208 (7)	Col-C1-O1	141.47 (4)
$\mathrm{Col}-\mathrm{Co} 2-\mathrm{C} 2$	50.27 (4)	Co3-C3B-C3B ${ }^{\prime}$	70.15 (5)
$\mathrm{Col}-\mathrm{Co} 2-\mathrm{C} 2{ }^{\prime}$	97.36 (4)	Со3-C3B-C2B	70.23 (8)
$\mathrm{Co1-Co2-CpA}$	137.85	C $3 B^{\prime}-\mathrm{C} 3 B-\mathrm{C} 2 B$	107.7 (1)
$\mathrm{C} 03-\mathrm{Co} 2-\mathrm{C} 2$	51.45 (3)	$\mathrm{Co3-C2B-C1B}$	70.4 (1)
$\mathrm{Co3-Co2-CpA}$	155.20	$\mathrm{Co} 3-\mathrm{C} 2 B-\mathrm{C} 3 B$	70.11 (8)
$\mathrm{C} 2-\mathrm{Co} 2-\mathrm{C} 2{ }^{\prime}$	102.45 (7)	$\mathrm{C} 18-\mathrm{C} 2 B-\mathrm{C} 3 B$	108.6 (2)
$\mathrm{C} 2-\mathrm{Co} 2-\mathrm{Cp} A$	122.68	$\mathrm{Co} 2-\mathrm{C} 3 A-\mathrm{C} 2 A$	70.06 (7)
Col-Co3-Col'	57.966 (9)	$\mathrm{Co} 2-\mathrm{C} 3 A-\mathrm{C} 3 A^{\prime}$	70.22 (5)
$\mathrm{Co1-C03-C02}$	59.652 (7)	$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 3 A^{\prime}$	107.66 (9)
$\mathrm{Col}-\mathrm{Co} 3-\mathrm{C} 2$	49.87 (4)		

carbons in the backbone of the ring, but the presence of methyl groups in (II) introduces new steric interactions of comparable strength not present in (I). These interactions are between the carbons of the terminal, doubly and triply bridging carbonyls with the methyl groups; the differences between the $\mathrm{OC}-(\mathrm{Me})$ distances and the sum of their van der Waals radii vary from 0.53 to $0.31 \AA$. These new steric interactions seem to be the cause of the greater distances between the Co atoms and the Cp^{*} ligands for (II). The average $\mathrm{Co}-\mathrm{C}_{\mathrm{Cp}}$ and $\mathrm{Co}-\mathrm{C}_{\mathrm{Cp}^{*}}$ distances are 2.082 and $2 \cdot 115 \AA$; the ranges for $\mathrm{Co}-\mathrm{C}_{\mathrm{Cp}}$ and $\mathrm{Co}-\mathrm{C}_{\mathrm{Cp}^{*}}$ distances are 2.075 (1)-2.089 (2) and $2 \cdot 100-2 \cdot 145 \AA$, respectively. If electronic effects were dominating, the opposite trend would be expected. There is a change of the angle formed by the planes of the rings in (I) to a value of 52.0° (average of two independent molecules) for the corresponding planes in (II). Also in (II) the doubly bridging carbonyl is tilted further away from the cobalt atom analogous to Co 2 in (I). This can be judged by the change in the angles between planes $P 1$ and $P 2$
from 102.6° in (I) to 105.9° for similar planes in (II). The Cp * rings are almost eclipsed; the torsion angles for the two independent molecules in (II), analogous to $\mathrm{C} 1 A-\mathrm{Co} 2-\mathrm{Co} 3-\mathrm{C} 1 B$ in (I), are -16.1 and 0.3°. To within $0.01 \AA$ the $\mathrm{Co}-\mathrm{CO}$ and the $\mathrm{C}-\mathrm{O}$ bond lengths remain the same in (I) as in (II). Hence, there is no significant evidence of an increase in back-donation caused by replacing the Cp rings with the more electron-donating Cp^{*} ligands.

An attempt was made to compare the crystal structure of (I) with its structure in solution. ${ }^{13} \mathrm{C}$ NMR spectra were obtained for a solution of (I) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. At room temperature the $100 \cdot 6 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum (natural abundance sample) of the region corresponding to the Cp peak shows only one resonance at 90.3 p.p.m. (relative to TMS). In order to observe the carbonyl region, a low-temperature ${ }^{13} \mathrm{C}$ NMR study was required (resonances of carbonyls bound to a ${ }^{59} \mathrm{Co}$ nucleus are not often seen at room temperature). In the temperature range $188-298 \mathrm{~K}$, weak peaks at 257 and 206 p.p.m. were observed; these are the characteristic resonance frequencies for terminal and doubly bridging carbonyls (Cohen, Kidd \& Brown, 1975). Above 273 K no carbonyl resonances were observed nor were resonances seen for the triply bridging carbons at any temperature studied; both observations may be due to T_{1} effects. The IR spectrum of (I) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature shows peaks at $2045,2022,1995,1867$ (broad), 1736 (shoulder) and $1725 \mathrm{~cm}^{-1}$. This spectrum is comparable to its KBr spectrum which proves the presence of three different types of carbonyls both in solution and in the solid state.

Based on the IR data and despite the fact that the triply bridging carbonyl could not be detected by ${ }^{13} \mathrm{C}$ NMR, we conclude that the solution structure of (I) is similar to that of the solid reported here.

References

bailey, W. I. Jr, Cotton, F. A., Jamerson, J. D. \& Kolthammer, B. W. S. (1982). Inorg. Chem. 21, 3131-3135.
Cirjak, L. M., Ginsburg, R. E. \& Dahl, L. F. (1979). J. Chem. Soc. Chem. Commun. pp. 470-472.
Cirjak, L. M., Ginsburg, R. E. \& Dahl, L. F. (1982). Inorg. Chem. 21, 940-957.
Cohen, M. A., Kidd, D. R. \& Brown, T. L. (1975). J. Am. Chem. Soc. 97, 4408-4409.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package, SDP/VAX V3.0. Enraf-Nonius, Delft, The Netherlands.
huang, J. S. \& Dahl, L. F. (1983). J. Organomet. Chem. 243, 57-68.
International Tables for X-ray Crystallography (1974). Vol. IV, p. 95. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
King, R. B. (1965). Organometallic Synthesis. Vol. I, edited by J. J. Eisch \& R. B. King, pp. 118-119. New York: Academic Press.

[^0]: \dagger To whom all correspondence should be addressed.

[^1]: * Lists of H -atom coordinates and thermal parameters, anisotropic thermal parameters, and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44244 (36 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

